Home / Insight / Inverter-Dominated Microgrid – Non-Pilot Protection

Inverter-Dominated Microgrid – Non-Pilot Protection

Inverter-Dominated Microgrid

Non-Pilot Protection of the Inverter-Dominated Microgrid.

Without utilizing costly communication systems, the existing protection strategies fail to reliably detect the occurrence and direction of faults in the inverter-dominated microgrid.

Paper Overview

In order to address this issue, this paper introduces a selective and reliable non-pilot protection strategy. It addresses the inverter-dominated microgrid. In fact, the proposed protection strategy does not require communication signals. It incorporates phase- and sequence-domain protective elements for reliable detection of symmetrical and asymmetrical faults. Furthermore, it improves the existing sequence-domain directional elements. In particular, it effectively utilizes them for accurate determination of the fault direction.

Of course, this happens in the presence of inverter-interfaced distributed energy resources. In addition, it selectively protects the inverter-dominated microgrid against internal and external faults. Finally, it is robust against the grid-connection mode of the microgrid and enables fuse protection of laterals and non-critical circuits.

The acceptable performance of the proposed protection strategy is verified through comprehensive fault studies. They were conducted on a realistic study system simulated in the PSCAD/EMTDC software environment. This paper also demonstrates that the proposed protection strategy can serve by using an off-the-shelf digital relay.

Microgrid Key Points

The proliferation of the alternating current (AC) microgrid holds down because of the lack of a cost-effective, selective, and reliable strategy for its protection against faults. The protection strategies used in traditional distribution networks are not generally applicable to microgrids. The protection challenges are further complicated in the inverter-dominated microgrid to which the majority, if not all, of the distributed energy resources (DERs), are interfaced through inverters. The issue is threefold.

First, the conventional over-current (OC) relays may fail to detect the limited fault currents contributed by the inverter-interfaced DERs (IIDERs). Second, coordinating the OC relays in the inverter-dominated microgrid is challenging, due to the significantly different fault current levels under the grid-connected and islanded operation modes. Third, the conventional phase- and sequence-domain directional elements fail to accurately determine the fault direction in the inverter-dominated microgrid. This happens under specific operating conditions, as demonstrated in this paper.

Different microgrid protection strategies are in place in order to address these issues.

To view the PDF, please click here.

Related Insight

Claresholm Solar Project – Utility Scale PV Independent Engineering

The 132 MWac Claresholm Solar Project is located in the Municipal District of Willow Creek, Alberta. Phoventus acted as an Independent Engineer for one of the potential buyers. In 2019, the project received regulatory approvals from the Alberta Utilities Commission. It executed a 74 MWac power purchase agreement with TC Energy Corporation. Construction is planning to begin […]

Read more
Interconnection Engineering

Interconnection Engineering

Phoventus Inc., performed due diligence, review, and capacity assessment for interconnection engineering. It was for a 150MW solar facility to the transmission system in the Southern Alberta Region. Recommended the most viable and cost-effective connection point to the transmission system following detailed calculation of stability limits, thermal ratings, and load-generation capacities in the designated planning area. […]

Read more
Owners Engineering

Owners Engineering / Behind the Meter BESS

Owners engineering services in including remediation of EPC – Electrical Design Engineering by Phoventus Inc. C&I Li-Ion Portfolio Confidential Battery Energy Storage Canada Electrical Engineering including technical oversight and input to the EPC contract development. About Canadian Power Engineers Canadian Power Engineers is an Ontario-based, fully licensed, and accredited Engineering firm with a global reputation for excellence in […]

Read more